Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ISPRS Journal of Photogrammetry and Remote Sensing ; 189:201-217, 2022.
Article in English | ScienceDirect | ID: covidwho-1851362

ABSTRACT

Observing traffic flow is of great significance to contemporary urban management. Overhead images, as represented by remote sensing images, provide a major source of information about traffic flow. However, the spatial resolutions of most common high-resolution remote sensing images are often limited to 0.5 m and even below, which makes it unrealistic to count vehicles by means of widely used object detection methods. Therefore, to explore the potential of remote sensing data for studying global urban development and management, this paper introduces a density map-based vehicle counting method for remote sensing imagery with limited resolution. Density map-based models regard the vehicle counting task as estimating the density of vehicle targets in terms of pixel values. We propose an improved CNN-based network, called Congested Scene Recognition Network Minus (CSRNet—), that generates a density map of vehicles from the input remote sensing imagery. A new dataset, RSVC2021, which was generated from the public DOTA and ITCVD datasets, is also introduced for network training and testing. A benchmark on the RSVC2021 dataset is accordingly established and CSRNet— is selected as the baseline model for subsequent experiments. A set of GF-2 time series images with a resolution of 1 m taken before, during and after the COVID-19 epidemic lockdown covering Wuhan city are applied for real-world application testing. The testing results on both the RSVC2021 dataset and real satellite images confirm that, in terms of both the counting values and the visualized density maps, the proposed method achieves good performance and exhibits considerable application potential in this task. The generating codes of RSVC2021 dataset will be publicly available at https://github.com/YinongGuo/RSVC2021-Dataset.

2.
Int J Appl Earth Obs Geoinf ; 103: 102503, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1356278

ABSTRACT

In order to mitigate the spread of COVID-19, Wuhan was the first city to implement strict lockdown policy in 2020. Even though numerous researches have discussed the travel restriction between cities and provinces, few studies focus on the effect of transportation control inside the city due to the lack of the measurement and available data in Wuhan. Since the public transports have been shut down in the beginning of city lockdown, the change of traffic density is a good indicator to reflect the intracity population flow. Therefore, in this paper, we collected time-series high-resolution remote sensing images with the resolution of 1 m acquired before, during and after Wuhan lockdown by GF-2 satellite. Vehicles on the road were extracted and counted for the statistics of traffic density to reflect the changes of human transmissions in the whole period of Wuhan lockdown. Open Street Map was used to obtain observation road surfaces, and a vehicle detection method combing morphology filter and deep learning was utilized to extract vehicles with the accuracy of 62.56%. According to the experimental results, the traffic density of Wuhan dropped with the percentage higher than 80%, and even higher than 90% on main roads during city lockdown; after lockdown lift, the traffic density recovered to the normal rate. Traffic density distributions also show the obvious reduction and increase throughout the whole study area. The significant reduction and recovery of traffic density indicates that the lockdown policy in Wuhan show effectiveness in controlling human transmission inside the city, and the city returned to normal after lockdown lift.

SELECTION OF CITATIONS
SEARCH DETAIL